import torch
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
import torchvision.transforms as transforms
import ray
from ray.util.sgd.torch import TorchTrainer
# https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
from ray.util.sgd.torch.resnet import ResNet18
def cifar_creator(config):
"""Returns dataloaders to be used in `train` and `validate`."""
tfms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
]) # meanstd transformation
train_loader = DataLoader(
CIFAR10(root="~/data", download=True, transform=tfms), batch_size=config["batch"])
validation_loader = DataLoader(
CIFAR10(root="~/data", download=True, transform=tfms), batch_size=config["batch"])
return train_loader, validation_loader
def optimizer_creator(model, config):
"""Returns an optimizer (or multiple)"""
return torch.optim.SGD(model.parameters(), lr=config["lr"])
ray.init()
trainer = TorchTrainer(
model_creator=ResNet18, # A function that returns a nn.Module
data_creator=cifar_creator, # A function that returns dataloaders
optimizer_creator=optimizer_creator, # A function that returns an optimizer
loss_creator=torch.nn.CrossEntropyLoss, # A loss function
config={"lr": 0.01, "batch": 64}, # parameters
num_workers=2, # amount of parallelism
use_gpu=torch.cuda.is_available(),
use_tqdm=True)
stats = trainer.train()
print(trainer.validate())
torch.save(trainer.state_dict(), "checkpoint.pt")
trainer.shutdown()
print("success!")